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Accurately predicting instability growth and mitigation

strategies is dependent on validating our computational models

* Electrothermal “striation” instability
in 20 micron wires initiated with 5. 1kJ/g ~ "SSSSN—S |

e e e

21965 6.151 keV Radiograph Frame 2

Object Dist. (mm)
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Initial Surface Roughness

l

Initiation Phase
Electrothermal Instabilities

* A.G. Rousskikh et al., Physics of Plasmas (2008).

l

Implosion Phase
Magneto Rayleigh Taylor (MRT) Instabilities

* D. B. Sinars et al.
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Electrothermal instabilities occur when material

conductivity is dependent on temperature

Striations

dn(T) A e
0 Ml S
ir ~ T

(Also sometimes referred to as thermal overheat Instabilities) N

~hotter

- ——————
- —— =

Filamentations
dn(T)
dT’

<0

which can tranform a 2D (r,z) problem

This is commonly the situation that occurs when ’ > . Lk
the term “electrothermal instabilities” is referred to in the literature into a full} 3D Conﬁgurdtlon
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Electrothermal instabilities occur when material

conductivity is dependent on temperature

Striations

~hotter

colder

which couple to Rayleigh-Taylor

Consider a small surface perturbation on a cylindrical liner
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Electrothermal instabilities occur when material

conductivity is dependent on temperature

Striations

which couple to Rayleigh-Taylor

Consider a small surface perturbation on a cylindrical liner

ST > 0 Since By ~ I/r, the current density is enhanced
) . [ > which increases localized ohmic heating, n j2.

)

T
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Electrothermal instabilities occur when material

conductivity is dependent on temperature

Striations

which couple to Rayleigh-Taylor

Consider a small surface perturbation on a cylindrical liner

i Since Bg ~ I/r, the current density is enhanced

0T > 0

) , [ — which increases localized ohmic heating, n j2.
Then, n increases which consequently further
enhances the localized ohmic heating,
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Electrothermal instabilities occur when material

conductivity is dependent on temperature

Striations
= =
| é
an
— dEn
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----- —————
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which couple to Rayleigh-Taylor

Consider a small surface perturbation on a cylindrical liner

) B

)

o1 >

4

0

Since By ~ I/r, the current density is enhanced
which increases localized ohmic heating, n j°.

Then, n increases which consequently further
enhances the localized ohmic heating,

which leads to increased  §T"
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Electrothermal growth rates can be estimated from

the equation for thermal balance

thermal Ohmic
(‘)T conduction radiati heatglg pdV
P(f\f"(r)T =V - (K¥T) — g + 15" —pYfv

Perturbing this equation produces the growth rate

(dn/dT);* 4 2 cos?x
pCy 1{F/F()

fastest growing modes will

have COS (¥ = U
1.e. Striations | ee—

' =
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« Solid Cu and Al rods (liner AR=1.0) were driven
with ~20MA of current in ~100ns using Sandia’s
Z accelerator

» Solid rods were used to limit convergence and
MRT growth

* Rods were fabricated and characterized by
General Atomics
—  Cu, ~5-10nm RMS surface finish (diamond turned)
— Al (5052), ~10-30nm RMS surface finish (diamond

turned)

Bl il s L1

1800 12 mm None : '

1801 Al 6.86 (1) 6151 :

1802 Cu 6.86 (2) 6151

1913 Al 6.86 (2) 6151 (7.5 mm tall, 6.86 mm diam. )

1916 Cu 6.86 (2) 6151

1922 Cu 6.86 (1) 6151

(1) 1865

e
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2-frame 6.151 keV monochromatic crystal

backlighting was used to image instability growth

Detector Housing e

(<]
@ o G

| -aser Targets ‘ g
‘ ~ R |
A Lo:

— Adjustable interframe time (2-20 ns)

» Most experiments used 14 ns due to the : ~ '
expected slow evolution of instabilities )

t'ng’ Z

A S
=
——

- ;i n
Apertures -,

ot 2
]

— Preshot radiographs were taken to accurately
measure image magnification and
significantly increase precision

Load\ = =

— One experiment used a new two color 2
capability (1.865 keV frame and 6. 151 keV
frame taken 2 ns apart)

w7 T T B e e T TR T

2-frame 6.151 keV Crystal Imaging
 Monochromatic (~0.5 eV bandpass)
» ~15 micron resolution
Large FOV ~ 4x10 mm

D.B. Sinars et al., Rev. Sci. Instrum. 75, 3672 (2004).
G.R. Bennett et al., RSI (2008).
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Significant portions of the rod are unstable to the

“striation” electrothermal instability
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Lee, More, Desjarlais Conductivity Table
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Temp (eV)
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Small changes in density lead to enormous
changes in resistivity at low temperatures!

Predicted Lagrangian Phase Space of Al Rod
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As soon as current begins to flow a nonlinear

magnetic diffusion wave propagates into the rod

HYDRA 1D Aluminum Rod Simulation T= -2 ns
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0.05 -- Total Pressure
-- Mag Pressure 5
-- Material Pressure 0.
-- Density

0.00—TTTTTTT T T T I TITr Tl TpTTTTT0.0

0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350
Radius (cm)

-In the outer surface layers, a positive total pressure gradient exists which causes the surface material to expand

- Since the density gradient has the same sign as the total pressure gradient in this region, which
Includes what we define to be the interface (0.1*density(peak)), it is MRT stable
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Pressure (MBar)

Significant instability growth is observed in regions

stable to MRT as the surface of the rod expands

HYDRA 1D Aluminum Rod Simulation T= 13 ns
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Rod is unstable to MRT growth as it begins to

compress under the magnetic pressure

HYDRA 1D Aluminum Rod Simulation T= 23 ns

Tovoebereebageeborenbrogdagag b

_ --Mag Pressure
- -- Material Pressurg
0.2— -- Density

-

1.2*_ E
1.0—_ i 3
g T -
n 08— -
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£ os— A
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@ _ -
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0. 04— - Total Pressure -

o

QO TT T TTT T Tttt
0.315 0.320 0.325 0.330 0.335 0.340 0.345 0350

Radius (cm)

- Density gradient now has the opposite sign as the total pressure gradient in the outer surface
layers and is consequently MRT unstable
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The fastest growth occurs immediately after

current begins to rise
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2D simulations show electro-thermal instabilities

develop after melt and seed later MRT growth

Aluminum Rod
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2D simulations show electro-thermal instabilities

develop after melt and seed later MRT growth

Aluminum Rod
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2D simulations show electro-thermal instabilities

develop after melt and seed later MRT growth

Aluminum Rod
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2D simulations show electro-thermal instabilities
develop after melt and seed later MRT growth

Aluminum Rod

3
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Tests with constant electrical conductivity and enhanced
thermal conduction are consistent with electrothermal
instabilities

e £
‘&%"*— \o
QYA datalararorerc bttt bt
T 0102 :
* Electrothermal instabilities should - = =
disappear if the electrical conductivity 8 = -
temperature dependence is removed B A
« Thermal conduction stabilizes short % E 2
wavelengths. £ = %
'g 0.00— =
201) 42 g :
J oT z ﬂé_-o.os—: 2D nominal =
F = < 2 2D Constant Conductivity =|
: = 2D Enhanced Themnal Conduction=
IOCV = d | :_
-0.10— &% Jrivrv e prpegpr g | ISLS R U S v
0 50 100
Time (ns)

Enhanced thermal conductivity not
only increases the minimum stabilized
wavelength, but delays onset of melt |

Enhanced Thermal Constant Electrical
Conduction Conductivity
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What is the most appropriate way to represent 3D
surface features in a 2D code

0 50 100 150 200 250 298

Measured Surface Roughness Spectrum

* Do pits and large features dominate?
« Variety of approaches were tried

* Method used for simulations shown in this
presentation

— FFTs were taken of lineouts taken at every
measured azimuthal point and then averaged

— Spectrum filtered for mesh resolution

— Inverse transformed onto simulation physical
mesh

10+3_J . v ] Sl A RFY ST vl

10+2:
Aluminum

101 — l Copper

U Tk T 0 A T Y R P 1 R O 5 O A LI (|

10'4*7 : SRS ST R RIS =L sl
0.1 1.0 10.0 10

G
o
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Three frames of Al data were obtained which show

a large range of instability growth

Experiment Simulation
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Only the largest perturbations show strong

correlation with the opposite side of imaged rod
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Five frames of Cu data were recorded which

showed qualitative differences with simulation

Experiment Simulation
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Al measurements match simulated radial trajectories

exceptionally well. Cu simulations are in much poorer agreement.

Al Rod Cu Rod

-

_|Illll|l|l||llll|||||l 3.5071_Il|l|l|l||||||||ll|l|l|l|l|l|l
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1o8 = . 340— =
£ o = x =
E E Eaxn= =
(7] —_— (7] =9 il
> - 5 = 2
© = T 3N0C =
© o G - -
e v il [+ = =
- 325— T

-

50

|||||1||||||||||||l|| 3.15;1-|I]I|l|I|I|I]l|l|l|lll|L|l\|I|I
0 20 40 60 80 0 S0 100 1

Time (ns) Time (ns)

. Simulated radius time history determined by calculating average radius (0.5
transmission contour) in a series of simulated radiographs

« Simulations with load Bdot current measurement (dashed curve) have even
greater discrepancy
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Highest fidelity copper models cannot match

measured radial trajectories

I||||1|||l|||||||||1|||1|1|||1l||1
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0 50 100 150
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Simulated Al perturbation growth lies nearly within error bars
while experimental Cu growth is approximately 2X lower than

& simulations

Cu Rod
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» Majority of instability growth occurs during the surface
initiation and expansion phase
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-color monochromatic crystal backlighting showed dramatic

ifferences in instability development

Cu has ~25 times more opacity
at 1865eV than 6151eV for Te<100 eV

1865 eV Radiograph (Z1922) 6151 eV Radiograph (Z1922)

L 4.5—_ - o~ 45—_
E - £ o
E - - £ C
o 4_0—_ L [0 8 4'0__ p E
05 10 15 20 29 30 3D 40 05 10 15 20 25 30 35 40
Z (mm) Z (mm)
Time was chosen to be the point at which simulations predicted the
maximum observable difference at 6151eV and 1865eV
2 ns interframe time (P RIS M o cenerar aromcs (1) Sendia National Laboratorie




Combining the Cu 2-color images improves dynamic

range and allows comparisons at much lower densities

Experiment Abel Inverted Simulation

3.7

W W
B
|

T

I

33—
3.2
8.1

0.0 0.5 1.0 15 2.0 25

21922 Mass Density t=95 (ns)

A A T T T O T R A AR I B

il

* Transmission range limited by obtained S2N of each

1 optically thick = image (5%-95%)
. region —- Experiment  ~ * 1865eV areal density range 2.0e-5 to 1.2e-3 (g/cm2)
y / == 2D Sim (Abel) - « 6151eV areal density range 4.8e-4 to 2.8e-2 (g/cm2)
..1 - ——
» 1 - * Alignment of 2 color images
g‘ g = — No preshot radiograph
@10_2; B — Theoretical relative image magnification assumed
=2 - — Radial alignment provided by shifting axially
% 1 - averaged areal density lineouts such that they
a . i - matched in the region where they overlap
L - — Axial alignment provided using a cross
5 o correlation function on the largest perturbations
I oy — Composite areal density map used to perform
1075 = Abel inversion

g i I S SO L LR | * Dynamic Range of ~60 for individual images, improves
=+ a2 2B 24 A& b to ~1400 when combined
Radius (mm)
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Aluminum Abel inversions show radial density

profiles are in very good agreement

Z1913 Mass Density t=37.6 (ns) Z1802 Mass Density t=83 (ns)
DR ; ERR 1oyl
0.5 - -- Experiment = - —-- Experiment =
-=2D Sim (Abel) -- 2D Sim (Abel) _
B P &
L
Q02- e \ - goI=-=" i
2 - o -
2 =" = -E -
¥, >
= 1 : - =
w > Optically thick 2 - . -
GCJ P regign 8 _ Optically
QO J ~ QO 01+ thick region _
0.05 — 5 B -
0.02 — - )
- T | Ve ) 0.001 = T [ oy
3.38 340 342 3.44 3.46 3.0 3.1 32 33 3.4
Radius (mm) Radius (mm)

- Early time simulation may have bad better agreement if VISAR current data was
recorded on that shot and used for this simulation.

- Later time agreement is excellent at densities down to 0.01 g/cc.

- Al simulations show a much broader distribution at lower densities than
experiments show. This is in complete contrast to Cu which showed the opposite.
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Dominant wavelengths and amplitudes agree

reasonably well with Al simulations

Power Spectrum (time=23.57 ns) Power Spectrum (time=83.04 ns)
_J e o v Foa Uadl @t g i | URETART| ST (I AN (N (O 1 () _J eowaad aow awme T e 1 \ T TN R TR R N R B L
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| 4] 107 — =
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| OO TR RO R U RSN IR (R T \ R R ] o AN [N TS T 13 BN ‘ U R I B L T I B 1
10.0 20. 50. 100.0 200. 500. 1000. 10.0 20. 50. 100.0 200. 500. 1000.
Wavelength (um) Wavelength (um)

Excellent agreement is observed considering perturbations have
grown 3 to 4 orders of magnitude in amplitude
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Cu simulations appear to be capturing the nonlinear
development to larger wavelengths, despite having larger

growth

Power Spectrum (time=129.45 ns)
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Magnltude of calculated electrothermal instability growth

Is insensitive to the level of initial surface roughness

T= 13 ns
o T T T T O O O O T O O A T A R T B R R A O N R I O A R
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Conclusions

* Perturbation growth is consistent with hypothesis of
electrothermal instabilities seeding subsequent MRT

« Solid rod experiments provide a stringent test of code
predictions of instability growth from surface roughness

* Aluminum simulations match experiments extremely well
but Copper material models appear to need some
improvement

 Magnitude of calculated electrothermal instability growth is
insensitive to the level of initial surface roughness
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Backups
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Reduce current density

[
50 ns current 100 ns current
pulse risetime pulse risetime
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More instability growth is observed with Al then Cu

experimentally

Cu Rod Al Rod

0 T [ Y 65

5 | - Radiographs compared at approximately
s 4 s same time and magnetic pressure
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